Neuro - Connect in Motivational Kinetics of Business Leadership

Author(s)

Col Prof Dr. J Satpathy , Prof. Dr. S. Sandhya , Prof. Dr. Dima Jamali ,

Download Full PDF Pages: 67-86 | Views: 41 | Downloads: 18 | DOI: 10.5281/zenodo.14955177

Volume 14 - March 2025 (02)

Abstract

Purpose: Purpose of this paper is to explore correlation between neuro-transmitters and business decisions with focus on prefrontal cortex to arrive at decisions.

Methodology: Methodology includes anxiety test, of Business Leaders (N = 03), to evaluate anxiety levels, neuro processing and decision making abilities in high-achieving leaders.

Analysis: Over decades, management has experienced various leadership styles.Each shapes how business leaders make decisions, set goals in organizations. Response of Amygdala neurotransmitter is tested through electrical stimulation to detect anxiety, neuro processing, emotional regulation and decision making abilities. Paper examines cerebral processes which business leaders pursue for positive outcomes or avoid threats. Motivation underpins these strategies, rooted in neurological processes where neuro-transmitters regulate behavior in business context (natural sciences perspective).  

Results: This paper demonstrates that intrinsic or extrinsic factors play crucial role in shaping motivational kinetics of business leaders. Experiments suggest link between neural activity, anxiety, and outcomes in decision-making. In Conclusion, paper emphasizes inter-connectedness of neuro-transmitters in influencing motivation levels business leaders’.

Originality/Value: The paper attempts to experimentally decipher the neuro - connect in motivational kinetics of business leadership.
Type of Paper: Experimental based analytical paper.

Keywords

Amygdala, Decision-Making, Motivation, Anxiety Test and EEG Tracking.

References

·        Altman RB. Guide to Bioinformatics at Stanford University. 2006. Accessed 21 March 2008. online URL: http://www-helix.stanford.edu/people/altman/bioinformatics.html.

·      Arbib, M. A., Bonaiuto, J. J., Bornkessel-Schlesewsky, I., Kemmerer, D., MacWhinney, B., Nielsen, F. Å., & Oztop, E. (2014). Action and language mechanisms in the brain: Data, models and neuroinformatics. Neuroinformatics, 12, 209–225.

·      Babiloni, C., Del Percio, C., et al. (2011). Neural efficiency of experts’ brain during judgment of actions: A high-resolution EEG study in elite and amateur karate athletes. Research Gate. Available at: https://www.researchgate.net/publication/38069518_Neural_efficiency_of_experts'_brain_during_judgment_of_actions_A_high-resolution_EEG_study_in_elite_and_amateur_karate_athletes

·      Baloh, R. W. (2024). Brain Electricity  SubtitleThe Interwoven History of Electricity and Neuroscience. UK: Springer.

·      Barabási, D. L., Bianconi, G., Bullmore, E., Burgess, M., Chung, S., Eliassi-Rad, T., George, D., Kovács, I. A., Makse, H., & Nichols, T. E. (2023). Neuroscience needs network science. Journal of Neuroscience., 43(34), 5989–5995.

·      Bisiani, J., Anugu, A., & Pentyala, S. (2023). It’s Time to Go Quantum in Medicine. Journal of Clinical Medicine, 12(13), 4506. https://.org/10.3390/jcm12134506

·      Dinov, I. D. (2023). Data Science and Predictive Analytics: Biomedical and Health Applications using R. Springer.

·      Dinov, I., & Velev, M. (2021). Data science: time complexity, inferential uncertainty, and spacekime analytics (1st ed., p. 450). Berlin/Boston: De Gruyter.

·      Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D., Chua, T. S., & Li, Q. (2024). A survey on rag meeting llms: Towards retrieval-augmented large language models. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 6491–6501).

·      Fink, A., & Neubauer, A.C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. PubMed. Available at: https://pubmed.ncbi.nlm.nih.gov/16503062/

·      Gao, X., Wang, Y., Chen, X., & Gao, S. (2021). Interface, interaction, and intelligence in generalized brain–computer interfaces. Trends in Cognitive Sciences., 25(8), 671–684.

·      Górriz, J. M., Ramírez, J., Ortiz, A., Martinez-Murcia, F. J., Segovia, F., Suckling, J., Leming, M., Zhang, Y.-D., Álvarez-Sánchez, J. R., & Bologna, G. (2020). Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications. Neurocomputing, 410, 237–270.

·      Gruzelier, J. H. (2013). EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. PubMed. Available at: https://pubmed.ncbi.nlm.nih.gov/24125857/

·      Kao, S.C., Huang, C.J., & Hung, T.M. (2013). Frontal midline theta is associated with athletic performance, particularly in experts. Research Gate. Available at: https://www.researchgate.net/publication/258336568_Frontal_Midline_Theta_Is_a_Specific_Indicator_of_Optimal_Attentional_Engagement_During_Skilled_Putting_Performance

·      Kasabov, N. (2013). Springer Hand of Bio-neuro-informatics. UK: Springer Science & Business Media.

 

·      Kleim, J.A., Hogg, T.M., et al. (2004). Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. PubMed. Available at: https://pubmed.ncbi.nlm.nih.gov/14736848/

·      Laakso, A., Vilkman, H., Bergman, J., Haaparanta, M., Solin, O., Syvälahti, E., & Hietala, J. (2002). Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects. PubMed. Available at: https://pubmed.ncbi.nlm.nih.gov/12372667/

·      Luber, B., et al. (2013). Enhancement of decision-making and error detection with transcranial magnetic stimulation. PubMed. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC4083569/

·      Plichta, M.M., et al. (2013). Simultaneous EEG and fMRI Reveals a Causally Connected Subcortical-Cortical Network during Reward Anticipation. PubMed. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC6618373/

·      Rao, R. P. (2023). Brain co-processors: Using AI to restore and augment brain function (pp. 1225–1260). Springer.

·      Vatansever, D., et al. (2017). Default mode contributions to automated information processing. PNAS. Available at: https://www.pnas.org/doi/10.1073/pnas.1710521114

·      Voigtlaender, S., Pawelczyk, J., Geiger, M., Vaios, E. J., Karschnia, P., Cudkowicz, M., Dietrich, J., Haraldsen, I. R. H., Feigin, V., & Owolabi, M. (2024). Artificial intelligence in neurology: Opportunities, challenges, and policy implications. Journal of Neurology., 271(5), 2258–2273.

·      Volkow, N. D., et al. (1997). Effects of methylphenidate on regional brain glucose metabolism in humans: Relationship to dopamine D2 receptors. PubMed. Available at: https://pubmed.ncbi.nlm.nih.gov/8988958

·      Zhang, R., Zhang, Y., Liu, Y., Guo, Y., Shen, Y., Deng, D., Qiu, Y. J., & Dinov, I. D. (2022). Kimesurface representation and tensor linear modeling of longitudinal data. Neural Computing and Applications. 34, 6377–6396. https://.org/10.1007/s00521-021-06789-8

 

·      Zhao, L., Zhang, L., Wu, Z., Chen, Y., Dai, H., Yu, X., Liu, Z., Zhang, T., Hu, X., & Jiang, X. (2023). When brain-inspired ai meets agi. Meta-Radiology, 1, 100005.

Cite this Article: