Agents of Complexity in AI Powered Neuro - Data Driven Decisions

Author(s)

Col Prof Dr. J Satpathy , Prof. Dr. S. Sandhya , Prof. Dr. Dima Jamali ,

Download Full PDF Pages: 44-66 | Views: 39 | Downloads: 17 | DOI: 10.5281/zenodo.14949627

Volume 14 - March 2025 (02)

Abstract

Purpose: Purpose of this paper is to reject traditional assumptions and evaluate cognitive factors that have stimulus on actor’s decision.The question being proposed is; Can cognitive processes be inferred from neuro-imaging data?
Methodology: Methodology includes an eye tracking experiment conducted on Eye Movements with single - subject towards obtaining deductions in deep uncertainty-based entrepreneurial complex decisions based on identifying fixations & saccades and eye movement (Geometry of Stimulus).
Analysis: One significant area where AI is making an impact is in the analysis of eye imaging data. Neuroimaging techniques produce vast amounts of data that can be challenging to interpret. AI algorithms, particularly those based on machine learning, can analyze these complex datasets more efficiently than traditional methods. Moreover, AI also aids in the modelling of neural networks. In neuroscience, the human eyes intricate network of neurons can be likened to artificial neural networks used in machine learning. By studying how biological neural networks operate, AI researchers can improve the design and effectiveness of artificial networks. Furthermore, AI is being used to simulate eye functions, providing insights into how we think, learn, and decide. Notwithstanding considerable developments, enquiry of how we make AI Powered neuro driven - datadecisions stays to posture significant trials for methodical explorations. How does an Entrepreneur choose via AI Powered Neuro Driven - Data? What part do eyes sprays perform in AI Powered neuro driven - data decision making? Scope examines challenges where range, dimensions and predictability of AI Powered neuro-driven – data biological substrates underlying cognition processes cannot be reasonably expected.

Results: This paper attempts to deliberate conclusions in the direction of understanding neuro - design and proposition to riposte topics in entrepreneurial preference undercurrents via. AI powered neuro driven – data biological substrates. Research efforts conclude with characteristic schemes and presents directions for future research. Research attempts would assist reconsidering practicalities of entrepreneurial preference dynamic forces by providing alternate arrangement for rational preference complications. This research opens new panoramas for future replicative scholarships.
Originality/Value: The paper attempts to experimentally decipher the Agents of Complexities in combinatorial AI powered neuro based data driven decisions.
Type of Paper: Experimental based analytical paper

Keywords

Artificial Intelligence, Deep Uncertainty, Neuro Driven – Data, Neuro-Feedback and Eye Movements

References

·       Abdelrahman, Y., Khan, A. A., Newn, J., Velloso, E., Safwat, S. A., Bailey, J., et al. (2019). Classifying attention types with thermal imaging and eye tracking. Proc. ACM Interact. Mobile Wearable Ubiquit. Technol. 3, 1–27. doi: 10.1145/3351227

·       Andrienko, G., Andrienko, N., Burch, M., and Weiskopf, D. (2012). Visual analytics methodology for eye movement studies. IEEE Trans. Vis. Comput. Graph. 18, 2889–2898. doi: 10.1109/TVCG.2012.276

·       Ascoli GA, Krichmar JL, Nasuto SJ, et al. Generation, description and storage of dendritic morphology data. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2001;356(1412):1131–45. : 10.1098/rstb.2001.0905.    

·       Bednar JA, Kelkar A, Miikkulainen R. Scaling self-organizing maps to model large cortical networks. Neuroinformatics. 2004;2(3):275–302. : 10.1385/NI: 2:3:275.   

·       Bernstein FC, Koetzle TF, Williams GJB, et al. The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 1977;112:535–42. : 10.1016/s0022-2836(77)80200-3.   

·       Bhattacharya, N.; Gwizdka, J. Relating eye - tracking measures with changes in knowledge on search tasks. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications—ETRA ’18; ACM: New York, NY, USA, 2018; pp. 1–5.

·       Bjaalie JG, Grillner S. Global neuroinformatics: the International Neuroinformatics Coordinating Facility. J. Neurosci. 2007;27(14):3613–5. : 10.1523/JNEUROSCI.0558-07.2007.    

·       Bullmore E, Long C, Suckling J, et al. Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum. Brain Mapp. 2001;12(2):61–78. : 10.1002/1097-0193(200102)12:2<61::AID-HBM1004>3.0.CO;2-W.    

·       Cao, Y., Miura, S., Kobayashi, Y., Kawamura, K., Sugano, S., and Fujie, M. G. (2016). Pupil variation applied to the eye tracking control of an endoscopic manipulator. IEEE Robot. Autom. Lett. 1, 531–538. doi: 10.1109/LRA.2016.2521894

·       Computational Neuroanatomy Group at the Krasnow Institute for Advanced Study. Computational Neuroanatomy Group online 2007. Accessed 21 March 2008. URL: http://www.krasnow.gmu.edu/L-Neuron/home.htm.

·       Crasto C, Marenco L, Miller P, et al. Olfactory Receptor Database: a metadata-driven automated population from sources of gene and protein sequences. Nucleic Acids Res. 2002;30(1):354–60. : 10.1093/nar/30.1.354.    

·       Dale AM, Liu AK, Fischl BR, et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron. 2000;26(1):55–67. : 10.1016/s0896-6273(00)81138-1.   

·       Dayhoff MO. Atlas of Protein Sequence and Structure, Vol 4 Suppl 3 National Biomedical Research Foundation, Washington DC, U. SA 1978 

·       Dickson J, Drury H, Van Essen DC. Surface management system (SuMS): A surface-based database to aid cortical surface reconstruction, visualization and analysis. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 2001;356(1412):1277–92. : 10.1098/rstb.2001.0913.    

·       Djamasbi, S.; Hall - Phillips, A.; Yang, R. Search results pages and competition for attention theory: An exploratory eye - tracking study. In Human Interface and the Management of Information. Information and Interaction Design; Yamamoto, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 576–583.

·       Fadili J, Bullmore ET. Wavelet-generalized least squares: a new BLU estimator of linear regression models with 1/f errors. NeuroImage. 2002; 15:217–32. : 10.1006/nimg.2001.0955.   

·       French L, Pavlidis P. Informatics in neuroscience. Brief Bioinform. 2007;8(6):446–56. : 10.1093/bib/bbm047.   

·       Gardner D, Knuth KH, Abato M, et al. Common Data Model for Neuroscience Data and Data Model Exchange. J. Am. Med. Inform. Assoc. 2001;8:17–33. : 10.1136/jamia.2001.0080017.    

·       Gebru, Timnit, and Kate Crawford. "Algorithmic Bias Detectable to Human Attention." Proceedings of the 27th ACM Conference on Human Factors in Computing Systems, 2019.

·       Goldberg, J.H.; Stimson, M.J.; Lewenstein, M.; Scott, N.; Wichansky, A.M. Eye tracking in web search tasks. In Proceedings of the Symposium on Eye Tracking Research & Applications—ETRA ’02; ACM: New York, NY, USA, 2002; pp. 51–58.

·       Goldberg, J.H.; Wichansky, A.M. Eye tracking in usability evaluation: A practitioner’s guide. In The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research; Hyönä, J., Radach, R., Deubelk, H., Eds.; Elsevier: New York, NY, USA, 2003; pp. 493–516. ISBN 9780444510204.

·       Granka, L.; Feusner, M.; Lorigo, L. Eye monitoring in online search. In Passive Eye Monitoring: Signals and Communication Technologies; Hammoud, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 347–372.

·       Guo, J. J., Zhou, R., Zhao, L. M., and Lu, B. L. (2019). “Multimodal emotion recognition from eye image, eye movement and eeg using deep neural networks,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 3071–3074.

·       Ha, J., Park, S., Im, C. H., and Kim, L. (2021). A hybrid brain–computer interface for real-life meal-assist robot control. Sensors 21, 4578. doi: 10.3390/s21134578

·       Hadida-Hassan M, Young SJ, Peltier ST, et al. Web-based telemicroscopy. J. Struct. Biol. 1999;125(2–3):235–45. : 10.1006/jsbi.1999.4095.   

·       Hines ML, Morse T, Migliore M, et al. ModelDB.: A Database to Support Computational Neuroscience. J. Comput. Neurosci. 2004;17(1):7–11. : 10.1023/B:JCNS.0000023869.22017.2e.    

·       Hofmann, K.; Mitra, B.; Radlinski, F.; Shokouhi, M. An eye - tracking study of user interactions with query auto completion. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management—CIKM ’14; ACM: New York, NY, USA, 2014; pp. 549–558.

·       Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., & Jarodzka, H. (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford University Press.

·       Hubbard AE, Mountain DC. EarLab @ Boston University; 2006. Accessed 21 March 2008. online URL: http://earlab.bu.edu

·       Huerta MF, Haseltine F, Liu Y, et al. NIH Working Definition of Bioinformatics and Comptutational Biology. 2000. Accessed 21 March 2008. online URL: http://www.bisti.nih.gov/CompuBioDef.pdf.

·       Huerta MF, Koslow SH, Leshner AI. The Human Brain Project: an international resource. Trends Neurosci. 1993;16(11):436–8. : 10.1016/0166-2236(93)90069-x.   

·       Insel TR, Volkow ND, Li TK, et al. Neuroscience Networks Data-sharing in an information age. PloS Biology. 2003;1(1):9–11. : 10.1371/journal.pbio.0000017.    

·       Interactive Multiple Gene Expression Maps. IMGEM. 2003. Accessed 21 March 2008. online URL: http://imgem.ucf.edu/

·       International Consortium for Brain Mapping. ICBM. 2007. Accessed 21 March 2008. online URL: http://www.loni.ucla.edu/ICBM/

·       Jacob, R. J. K., & Karn, K. S. (2003). Eye tracking in human–computer interaction and usability research: Ready to deliver the promises. ACM SIGCHI Computer Graphics and Human - Computer Interaction Newsletter, 35(3), 4 - 10.

·       Jones Laboratory University of California Davis. 2007. Accessed 21 March 2008. BrainMaps.org online URL: http://brainmaps.org.

·       Kammerer, Y.; Gerjets, P. Effects of search interface and Internet - specific epistemic beliefs on source evaluations during Web search for medical information: An eye - tracking study. Behav. Inf. Technol. 2012, 31, 83–97.  

·       Karessli, N., Akata, Z., Schiele, B., and Bulling, A. (2017). “Gaze embeddings for zero-shot image classification,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4525–4534.

·       Kennedy DN, Haselgrove C. The internet analysis tools registry: a public resource for image analysis. Neuroinformatics. 2006;4(3):263–70. : 10.1385/NI: 4:3:263.   

·       Kim, J.; Thomas, P.; Sankaranarayana, R.; Gedeon, T.; Yoon, H. - J. Eye - tracking analysis of user behaviour and performance in web search on large and small screens. J. Assoc. Inf. Sci. Technol. 2015, 66, 526–544.  

·       Kootstra, T., Teuwen, J., Goudsmit, J., Nijboer, T., Dodd, M., and Van der Stigchel, S. (2020). Machine learning-based classification of viewing behavior using a wide range of statistical oculomotor features. J. Vis. 20, 1–1. doi: 10.1167/jov.20.9.1

·       Kubacki, A.. (2021). Use of force feedback device in a hybrid brain-computer interface based on SSVEP, EOG and eye tracking for sorting items. Sensors 21, 7244. doi: 10.3390/s21217244

·       Laboratory of Neuro Imaging UCLA. LONI. 2007. Accessed 21 March 2008. online URL: http://www.loni.ucla.edu.

·       Laboratory of Neuroinformatics Weill Medical College of Cornell University. 2007a. Accessed 21 March 2008. LNI neurodatabase.org online URL: http://neurodatabase.org.

·       Laboratory of Neuroinformatics Weill Medical College of Cornell University. BrainML Model Repository online 2007b. Accessed Accessed 21 March 2008. URL: http://brainml.org.

·       Lai, M. - L.; Tsai, M. - J.; Yang, F. - Y.; Hsu, C. - Y.; Liu, T. - C.; Lee, S.W. - Y.; Lee, M. - H.; Chiou, G. - L.; Liang, J. - C.; Tsai, C. - C. A review of using eye - tracking technology in exploring learning from 2000 to 2012. Educ. Res. Rev. 2013, 10, 90–115.  

·       Lam HY, Marenco L, Clark T, et al. AlzPharm: integration of neuro-degeneration data using RDF. BMC Bioinformatics. 2007; 9((8)(Suppl 3)):S4. : 10.1186/1471-2105-8-S3-S4. Review.    

·       LeCun, Yann, et al. "Deep Learning." Nature, vol. 521, 2015, pp. 436 - 444.

·       Lewandowski, D.; Kammerer, Y. Factors influencing viewing behaviour on search engine results pages: A review of eye - tracking research. Behav. Inf. Technol. 2020, 1–31.  

·       Li X, Ascoli GA. Computational simulation of the input-output relationship in hippocampal pyramidal cells. J. Comput. Neurosci. 2006;21(2):191–209. : 10.1007/s10827-006-8797-z.   

·       Lim JZ, Mountstephens J and Teo J (2022) Eye-Tracking Feature Extraction for Biometric Machine Learning. Front. Neurorobot. 15:796895. doi: 10.3389/fnbot.2021.796895

·       Lin, X., Chen, Z., Xu, K., and Zhang, S. (2019). “Development of a high-speed mental spelling system combining eye tracking and SSVEP-based BCI with high scalability,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 6318–6322.

·       Liu N, Xu F, Marenco L, Hyder F, Miller P, Shepherd GM. Informatics approaches to functional MRI odor mapping of the rodent olfactory bulb: OdorMapBuilder and OdorMapDB. Neuroinformatics. 2004;2(1):3–18. : 10.1385/NI:2:1:003.   

·       Liversedge, S.P.; Paterson, K.B.; Pickering, M.J. Eye Movements and Measures of Reading Time. Eye Guid. Read. Scene Percept. 1998, 55–75.  

·       Lorigo, L.; Haridasan, M.; Brynjarsdóttir, H.; Xia, L.; Joachims, T.; Gay, G.; Granka, L.; Pellacini, F.; Pan, B. Eye tracking and online search: Lessons learned and challenges ahead. J. Am. Soc. Inf. Sci. Technol. 2008, 59, 1041–1052.  

·       Mainen ZF, Sejnowski TJ. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature. 1996;382:363–6. : 10.1038/382363a0.   

·       Mao, J.; Liu, Y.; Zhang, M.; Ma, S. Estimating credibility of user clicks with mouse movement and eye - tracking information. In Natural Language Processing and Chinese Computing; Zong, C., Nie, J. - Y., Zhao, D., Feng, Y., Eds.; Springer: Berlin, Germany, 2014; pp. 263–274.

·       Marenco L, Tosches N, Crasto C, et al. Achieving evolvable Web-database bioscience applications using the EAV/CR. framework: recent advances. J. Am. Med. Inform. Assoc. 2003;10(5):444–53. : 10.1197/jamia.M1303.    

·       Marenco L, Wang TY, Shepherd G, et al. QIS: A framework for biomedical database federation. J. Am. Med. Inform. Assoc. 2004;11(6):523–34. : 10.1197/jamia.M1506.    

·       Martone ME, Gupta A, Ellisman MH. E-neuroscience: challenges and triumphs in integrating distributed data from molecules to brains. Nat. Neurosci. 2004;7(5):467–72. : 10.1038/nn1229.   

·       Mazziotta J, Toga A, Evans A, et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) Philos. Trans. R. Soc. Lond. Biol. Sci. 2001;356(1412):1293–322. : 10.1098/rstb.2001.0915.    

·       Meissner, M.; Oll, J. The Promise of Eye - Tracking Methodology in Organizational Research: A Taxonomy, Review, and Future Avenues. Organ. Res. Methods 2019, 22, 590–617.

·       Migliore M, Hines ML, Shepherd GM. The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. J. Comput. Neurosci. 2005;18(2):151–61. : 10.1007/s10827-005-6556-1.   

·       Migliore M, Morse TM, Davison AP, et al. ModelDB.: making models publicly accessible to support computational neuroscience. Neuroinformatics. 2003;1(1):135–9. : 10.1385/NI:1:1:135.    

·       Mikula S, Trotts I, Stone JM, et al. Internet-enabled high-resolution brain mapping and virtual microscopy. Neuroimage. 2007;35(1):9–15. : 10.1016/j.neuroimage.2006.11.053.    

·       Modayur BR, Prothero J, Rosse C, et al. Visualization and mapping of neurosurgical functional brain data onto a 3-D MR-based model of the brain surface. Proc AMIA Annu Fall Symp. 1996:304–8.   

·       National Center for Biotechnology Information. All database search online 2007. Accessed 21 March 2008. URL: http://www.ncbi.nlm.nih.gov/sites/gquery?itool=toolbar.

·       National Center for Microscopy and Imaging Research. Cell. Centered Database online 2007. Accessed 21 March 2008. URL: http://ccdb.ucsd.edu/

·       National Institute of Mental Health. Neuroinformatics: Human Brain Project online 2007. Accessed 21 March 2008. URL: http://www.nimh.nih.gov/neuroinformatics/index.cfm.

·       National Library of Medicine, National Institute of Health. Growth of GenBank 1982–2005 online 2005b. Accessed 21 March 2008. URL: http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html.

·       National Library of Medicine, National Institute of Health. Medical Subject Headings (MeSH) online 2007. Accessed 21 March 2008. URL: http://www.nlm.nih.gov/mesh/meshhome.html.

·       National Library of Medicine, National Institute of Health. Public Collections of DNA and RNA Sequence Reach 100 Gigabases online 2005a. Accessed 21 March 2008. URL: http://www.nlm.nih.gov/news/press_releases/dna_rna_100_gig.html.

·       Neuroscience Information Framework. NIF Catalog Testbed online 2007. Accessed 21 March 2008. URL: http://neurogateway.org/ and http://nif.sdsc.edu/nif/nifBasic.html.

·       Orlosky, J., Huynh, B., and Hollerer, T. (2019). “Using eye tracked virtual reality to classify understanding of vocabulary in recall tasks,” in 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR). IEEE, 666–667.

·       Ouzounis CA, Valencia A. Early bioinformatics: the birth of a discipline-a personal view. Bioinformatics. 2003;19:2176–90. : 10.1093/bioinformatics/btg309.   

·       Peterson BE, Healy MD, Nadkarni PM, et al. ModelDB: an environment for running and storing computational models and their results applied to neuroscience. J. Am. Med. Inform. Assoc. 1996;33(6):389–98. : 10.1136/jamia.1996.97084512.    

·       Philipp, A. M., & Koch, I. (2010). The integration of task - set components into cognitive task representations. Psychologica Belgica, 50, 383–411.

·       Poliakov AV, Albright E, Hinshaw KP, et al. Server-based approach to web visualization of integrated three-dimensional brain imaging data. J. Am. Med. Inform. Assoc. 2005; 12(2):140–51. : 10.1197/jamia.M1671.    

·       Rosen GD, La Porte NT, Diechtiareff B, et al. Informatics center for mouse genomics: the dissection of complex traits of the nervous system. Neuro-informatics. 2003;1(4):327–42. : 10.1385/NI:1:4:327.   

·       Roy, A. K., Akhtar, M. N., Mahadevappa, M., Guha, R., and Mukherjee, J. (2017). A novel technique to develop cognitive models for ambiguous image identification using eye tracker. IEEE Trans. Affect. Comput. 11, 63–77. doi: 10.1109/TAFFC.2017.2768026

·       Saab, K., Hooper, S. M., Sohoni, N. S., Parmar, J., Pogatchnik, B., Wu, S., et al. (2021). “Observational supervision for medical image classification using gaze data,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (Cham: Springer), 603–614.

·       Sandhya, S. and Satpathy, J. (2024). Decision - Oriented Leadership in Artificial Intelligence Milieu, Journal of YMER, ISSN: 0044-0477, Volume 23: Issue 10 (Oct) – 2024, Pp: 1231 – 1256, DoI: 10. 37896 YMER 23. 10 / 89. Scopus, (International).

·       Sandhya, S. and Satpathy, J. (2024). Rendezvous on Preference Selection, Journal of Dynamics and Control, ISSN: 1672-6553, Vol. 08, Issue. 09, Pp: 321 - 343, Scopus, (International). DoI https://zenodo.org/records/13832405

·       Sandhya, S., Satpathy, J. and Aithal, P.S. (2024), Cognito - Soundings in Entrepreneurial Decisions, Proceedings of National Conference on “Sustainable Leadership and Technological Innovation for a Resilient Future” (NCSLTIRF) – 2024, 24 Dec 2024, Poornaprajna Institute of Management, Udupi, Karnataka, India (National).

·       Sandhya, S., Satpathy, J. and Aithal, P.S. (2024), Neural Basis in Trainer - Trainee - Instructional Pathway, Proceedings of National Conference on “Sustainable Leadership and Technological Innovation for a Resilient Future” (NCSLTIRF) - 2024, 24 Dec 2024Poornaprajna Institute of Management, Udupi, Karnataka, India (National).

·       Sandhya, S., Satpathy, J. and Aithal, P.S. (2024). Convolutions in Ophthalmic - Based Entrepreneurial Decisions: Research Agenda, IUJ Journal of Management, Vol. 12, Issue No.2, December 2024, Pp: 43 - 74, eoi.citefactor.org/12.11224/IUJ.12.02.03, ICFAI University Jharkhand, India (National). (National).  

·       Satpathy, J. (2024). Wherever There Is Judgment, There Is Noise - And More Of It Than You Think”, Kahneman in Quotes and Reflections, pp: 36 – 37, Behavioral Economics - Psychology Today, Ed. Joachim I. Krueger, Brown University, USA (International).

·       Satpathy, J. and Sandhya, S.  (2024). Cognito - Mathematical Signatures In Managerial ‘Decision’ Path, International Conference on Theory and Applications of  Mathematics, 28 - 29 Sep, Tripura Mathematical Society, Dept. of Mathematics, Tripura Central University, Agartala, Tripura India (National) 

·       Satpathy, J., Arif, A and Sandhya, S. (2024). Pearl in the Oyster: Decision Making in a Cognito - Ocular Framework, National Conference on Data - Driven Decision Making: Transforming Management Practices for the Future, 25 May 2024, NITTE School of Management, Yelahanka, Bengaluru, India (National). Best Paper Award

·       SfN. Neuroscience Database Gateway. 2007. Accessed 21 March 2008. NDG online URL: http://ndg.sfn.org/ and Databases having Atlas as Categories. URL: http://ndg.sfn.org/eavObList.aspx?cl=81&at=262&vid=28603.

·       Shepherd Laboratory Yale University. Senselab online 2007. Accessed 21 March 2008. URL: http://senselab.med.yale.edu.

·       Smaglik P. Internet gateway planned for neuro-informatics data. Nature. 2000;405(6787):603. : 10.1038/35015227.   

·       Smith TF. The history of the genetic sequence databases. Genomics. 1990;6(4):701–7. : 10.1016/0888-7543(90)90509-s.   

·       Structural Informatics Group University of Washington Seattle. The UW Integrated Brain Project online 2007. Accessed 21 March 2008. URL: http://sig.biostr.washington.edu/projects/brain/

·       Toga AW, Thompson PM, Mori S, et al. Towards multimodal atlases of the human brain. Nat. Rev. Neurosci. 2006;7(12):952–66. : 10.1038/nrn2012. Review.    

·       Trotts I, Mikula S, Jones EG. Interactive visualization of multi - resolution image stacks in 3D. Neuroimage. 2007; 35(3):1038–43. : 10.1016/j.neuroimage.2007.01.013.    

·       Van Essen DC, Harwell J, Hanlon D, et al. Surface-Based Atlases and a Database of Cortical Structure and Function. In: Koslow SH, Subramaniam S, editors. Databasing the Brain: From Data to Knowledge (Neuroinformatics) New Jersey: John Wiley and Sons; 2004. 

·       Van Essen Laboratory University of Washington St Louis. CARET and Surface-Based Atlases online 2007a. Accessed 21 March 2008. URL: http://brainmap.wustl.edu/vanessen.html.

·       Van Essen Laboratory University of Washington St Louis. SumsDB. (Surface Management System Database) and WebCaret Online Visualization online 2007b. Accessed 21 March 2008. URL: http://sumsdb.wustl.edu/sums.

·       Van Horn JD, Grafton ST, Rockmore D, et al. Sharing neuroimaging studies of human cognition. Nat. Neurosci. 2004;7(5):473–81. : 10.1038/nn1231. Review.   

·       Wikipedia contributors. “Bioinformatics,” Wikipedia, The Free Encyclopedia. 2008. Accessed 21 March 2008. URL: http://en.wikipedia.org/w/index.php?title=Bioinformatics&oldid=197214737.

·       Wilbertz, G., Ketkar, M., Guggenmos, M., and Sterzer, P. (2018). Combined fMRI-and eye movement-based decoding of bistable plaid motion perception. NeuroImage 171, 190–198. doi: 10.1016/j.neuroimage.2017.12.094

·       Yang, F. - Y.; Tsai, M. - J.; Chiou, G. - L.; Lee, S.W. - Y.; Chang, C. - C.; Chen, L.L. Instructional suggestions supporting science learning in digital environments. J. Educ. Technol. Soc. 2018, 21, 22–45.

·       Yarkoni, Tal, and Jordan B. Millar. "Neuroscience Data Shareable and Accessible: A Prescription for Progress." Nature Reviews Neuroscience, vol. 22, no. 6, 2021, pp. 378 - 396.

·       Yoo, S., Jeong, D. K., and Jang, Y. (2019). The study of a classification technique for numeric gaze-writing entry in hands-free interface. IEEE Access 7, 49125–49134. doi: 10.1109/ACCESS.2019.2909573

·       Zhang, Y., and Juhola, M. (2016). On biometrics with eye movements. IEEE J. Biomed. Health Inform. 21, 1360–1366. doi: 10.1109/JBHI.2016.2551862

·       Zheng, W. L., and Lu, B. L. (2017). A multimodal approach to estimating vigilance using EEG and forehead EOG. J Neural Eng. 14, 026017. doi: 10.1088/1741-2552/aa5a98

·       Zhou, X., Gao, X., Wang, J., Yu, H., Wang, Z., and Chi, Z. (2017). Eye tracking data guided feature selection for image classification. Pattern Recogn. 63, 56–70. doi: 10.1016/j.patcog.2016.09.007

Cite this Article: